

Two-Session-Clustering Workshop

03.03.2021 | SESSION 2: Powerfilms for infrared radiative heating

Presenter:

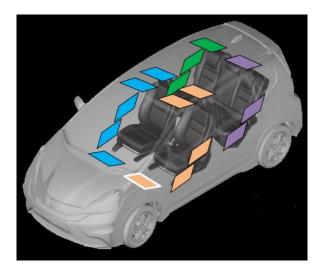
Daniel HABENBACHER



Portfolio ATT POWERFILM

- Additive or subtractive lay-up
- AC/DC up to 800v validated
- Maximum power up to 50 kw/m²
- Lightweight
- Thin and flexible
- Typical temperature range up to 120° C
- Maximum possible temperature 250° C
- With or without PTC effect
- Carbon or transparent version
- Fully customizable:
 - Size and shape (2D/3D)
 - Materials selected specifically for each application
 - Interface to heated product (application, heat transfer)
 - Thermal and electrical insulation

03.03.2021



Tasks of ATT in the QUIET Project RADIATIVE HEATING ELEMENTS

Development of an energy saving interior heating concept

- Tasks of ATT:
 - Definition of suitable interior parts that can be heated
 - Design of heating elements and control unit
 - Production of heating elements and control unit
 - Integration and optimization of ECU parameters
- Interior parts with attached heating foils
 - 2 heating elements at each door (8)
 - sunvisors (2)
 - Footwell driver (1)
 - Footwell passenger (1)
 - Roof (4, above each passenger)

Heating foil (sunvisor) LAYER STRUCTURE

- Protective coating
 - Screen printed protective ink
- Active layer
 - Screen printed carbon ink
- Electrodes
 - Etched copper electrodes
- Substrate
 - Polyimide
- Sensor
 - Etched copper meander
- Adhesive tape

Figure 4: Layer structure of a heating foil

03.03.2021

Heating foil (sunvisor) RESULTS

- Heating power density
 - Simulation
 - Verification of electrode and carbondesign
- Produced heating foil
 - Applied on a 3D GFRP (glass-fibre reinforced plastic)
 - Homogenous heat distribution over the whole area

Figure 6: Produced heating foil

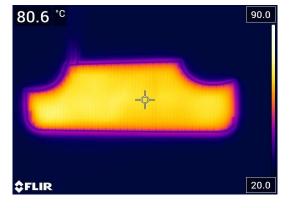


Figure 7: Infrared picture at $80^\circ\,$ C of the applied heating foil

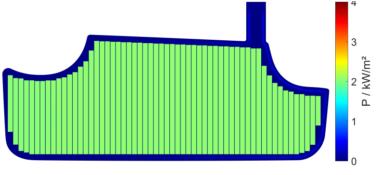


Figure 5: Heating power density

03.03.2021

European Commission

Horizon 2020 European Union funding for Research & Innovation

ECU CONSTRUCTION

- 3 independent DC/DC- converter modules with each 750 W power
 - $= 400 \text{ V} \rightarrow 48 \text{ V}$
- The CU is divided into three sections. Each section contains two or three power boards
- All boards of the CU are securely bolted onto copper busbars, which also include the functionality of the power delivery system

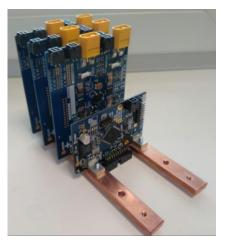


Figure 8: Power boards, molted onto copper busbars

Figure 9: left: DC/DC converter modules; right: three sections with power boards

03.03.2021

Development of the ECU RESULTS

The ECU 's firmware complies with the following functionalities:

- Control of the heating foils
- Current draw and voltage level
- CAN communication
- Read-out of calibration values

GUI (Graphical User Interface):

- Switch on/off each heating foil independently
- Individually set value for control variable (power per area [W / m²])
- Monitor measurements over time

ezeichnung	Spannung	Strom	Laisting	Istiemperatur	Solltemperatu			Widerstandswert Exclans
	openning	auom	ceistung	remainperatur.	Stevergerät	Vorgabe	PWM-Wert	Micheral Landswert Ein/Aus
Roof Back, right	14,440V	0,90A	13,0W	59,7°C	60,0°C	60,0*C	15	16,000hm Ethanet
Roof Back, left	26,970V	1,24A	33,5W	58,4°C	60,0*C	60,0*C	211	22,000hm Emprechater
Door Back 2, right	41,160V	2,10A	86,5W	59,4°C	60,0°C	60,0°C	a a a a a a a a a a a a a a a a a a a	20,000hm Executated
Door Back 2, left	0,046V	0,00A	0,0W	-999,0°C	60,0°C	60,0*C	a	INFOhm Exception
Door Front 2, right	48,190V	1,89A	91,3W	58,6°C	60,0°C	60,0°C	100	25,000hm
Door Front 2, left	48,040V	1,46A	70,0W	57,6°C	60,0*C	60,0°C	202	33,000hm
Sunvisor, Passenger	47,580V	1,17A	55,5W	57,4°C	60,0*C	60,0°C	101	41,000hm Congreschetet
Sunvisor, Driver	47,550V	1,11A	52,8W	57,0°C	60,0*C	60,0°C	6375	43,000hm
Footwell, Passenger	47,620V	1,64A	78,2W	55,0°C	60,0°C	60,0°C	1075	29,000hm Emgeschaltet
Footwell, Driver	47,800V	1,20A	57,6W	56,6°C	60,0*C	60,0*C	101	40,000hm
Door Front 1, right	47,110V	3,75A	176,70	60,3°C	60,0*C	60,0*C	201	13,000hm
Door Front 1, left	47,560V	4,00A	190,20	60,3°C	60,0°C	60,0°C	102	12,000hm
Roof Front, Driver	48,030V	2,90A	139,10	V 57,3°C	60,0°C	60,0*C	002	17,000hm Etogenshatet
Roof Front, Passenge	r 48,050V	3,73A	179,50	V 58,7*C	60,0°C	60,0°C	772	13,000hm Etreestatet
Door Back 1, right	47,970V	4,47A	214,21		60,0°C	60,0°C	215	44,000hm Council
Door Back 1, left	48,000V	1,10A	52,90		00,00		102	44,0001111
			1490,9	w	-			

Figure 10: GUI

Horizon 2020 European Union funding for Research & Innovation

Daniel HABENBACHER ATT advanced thermal technologies GmbH Phone: +43 664 88 16 56 38 Email: daniel.habenbacher@thermaltech.at Website: www.thermaltech.at

