



1



## Two-Session-Clustering Workshop

3<sup>rd</sup> March 2021 | SESSION 2: Seats that will reduce the weight and energy consumption of the entire electric vehicle

Presenter:

Jürgen ROITHER







# Seats that will reduce the weight and energy consumption of the entire electric vehicle **OBJECTIVES**

• Objective of QUIET – AREA II "lightweight materials and thermal insulation":



### Main partners involved:



## → Expected reduction of energy consumption in entire AREA II from these factors is around 10 %.





### Seats that will reduce the weight and energy consumption of the entire electric vehicle APPROACH

Analysis of SotA vehicle seat



Lightweight structure design & virtual analysis





- ABC weight analysis of original seat structure
  - $\rightarrow$  "frame seat plate" & "back complete" greatest potential for weight reduction
- Design of lightweight seat structure by the CAD-tool CATIA:
- Virtual test of strength by finite elements method according to EU & US regulation:







# Seats that will reduce the weight and energy consumption of the entire electric vehicle APPROACH

Manufacturing of prototype parts, build-up of the improved seat

Design works for low-pressure die-casting (LPDC) process:



#### LPDC: preparatory works and LPDC-process:







Designing and forging sheet metal parts for assembling back complete:



#### Assembly of entire seat

03.03.2021





Seats that will reduce the weight and energy consumption of the entire electric vehicle **RESULTS** 

 Summary of design phase: QUIET prototype seat structure with proposed expanded polypropylene (EPP) inserts:

EPP insert headrest Fabric cover backrest fabric cover and foam







# Seats that will reduce the weight and energy consumption of the entire electric vehicle **RESULTS**

- Manufacturing of lightweight prototype parts with low-pressure die-casting (LPDC) process
- Designing and forging sheet metal parts, milling foams, finishing seat covers
- Assembly of QUIET prototype seat
- Manufactured prototype seat



 Design of backrest for serial production (headrest support):



### Summary: weight balance

| Seat structure                   | Total weight [kg] | Weight loss [%] |
|----------------------------------|-------------------|-----------------|
| Original Honda FIT EV            | 21.4              | -               |
| Manufactured prototype           | 19.7              | 8.0             |
| Serial, developed from prototype | 17.8              | 16.8            |

03.03.2021





## Presenter contact details:

Jürgen ROITHER Austrian Institute of Technology – Light Metals Technologies Ranshofen (AIT-LKR – Leichtmetallkompetenzzentrum Ranshofen GmbH)

www: <u>https://www.ait.ac.at/en/about-the-ait/center/center-for-low-emission-</u> <u>transport/lkr-leichtmetallkompetenzzentrum-ranshofen</u>

### e-mail: juergen.roither@ait.ac.at







## Get in touch with the QUIET consortium!

## www.quiet-project.eu

Project Coordination: Dragan SIMIC (AIT Austrian Institute of Technology GmbH | www.ait.ac.at) e-mail: dragan.simic@ait.ac.at

