

1

Two-Session-Clustering Workshop

2021.03.03. | SESSION 2: Lightweight materials with enhanced thermal properties

Presenter:

Tamas TURCSAN

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 769826. The content of this publication is the sole responsibility of the Consortium partners listed herein and does not necessarily represent the view of the European Commission or its services.

Lightweight materials with enhanced thermal properties OBJECTIVES

- Drive range extension (~25%)
- Lighter body structure
 - Minimizing energy loss from
 - acceleration,
 - non-recuperable kinetic energy
 - Compensating additional features (PCM, etc.)
 - Seats: -10 % (from ~40 kg)
 - Doors, trunk lid, engine hood: -20 % (from ~80 kg)
- Better thermal performance, minimizing energy consumption
 - In cabin heating/cooling
 - Better insulation (20% energy for heating/cooling)
 - Lower thermal inertia (-5% energy for heating/cooling)

Lightweight materials with enhanced thermal properties APPROACH

- Side doors, trunk lid, egngine hood
- Using hybrid foam and composites
 - Lower density, better thermal perf.
 - Great energy absorbance
- FEM of original structures
 - Static load cases (by HONDA)
 - Side crash of doors (FMVSS 214)
- Material testing and redesign
 - FEM of the new structure
 - Optimizing the design
 - Stiffness-mass-insulation trade-offs

Lightweight materials with enhanced thermal properties APPROACH

- Material selection
 - CFRP Carbon Reinforced Polymer
 - Tensile strength of 500-1500 MPa
 - Density of 1.4-1.6 g/cm³
 - Thermal conductivity 5 W/(m K)
 - Crash beams filled with APM
 - In-house test result based simulations
- Manufacturing
 - Cost effective prototyping
 - Minimizing tooling cost
 - For small series
 - Upscalable technologies
 - For larger series
 - Up to 10,000 unit/year

Lightweight materials with enhanced thermal properties RESULTS

Measured weight loss

Part	Baseline weight [kg]	Global weight red. [%]	Weight red. with new glazing [%]
Front Side Door	21.43	21.56	31.23
Rear Side Door	14.12	22.98	24.89
Engine Hood	3.67	27.20	N/A
Tailgate	15.53	22.91	28.13
	AVG	23.66	28.08

Calculated thermal conductivity

Part	Composite surface [m ²]	Steel surface [m ²]	Thermal conductivity decrement [%]
Front Side Door	0.74	0.06	84.9
Rear Side Door	0.60	0.08	81.0
Tailgate	0.80	0.00	91.8
•	•	AVG	85.9

- Calculated thermal inertia, doors
 - -80% for targeted str. elements
 - Up to -40% for global door

Lightweight materials with enhanced thermal properties RESULTS

Manufacturing costs

Manufacturing method	Quality, precision, repetitiveness	Tooling Cost	Part per year [unit]*
Hand lay-up (vacuum assisted)	+	€	100-200
Vacuum injection (infusion)	++	EE	300-500
Prepreg + Vacuum bag	+++	EEE	100-200
Prepreg +Autoclave	+++++	66666	100-200
Composite Pressing (SMC)	+++++	EEE	10,000-50,000
RTM	+++++	EEE	1,000-5,000
T-RTM	+++++	EEEE	10,000-50,000

*estimation, mediums size and complexity carbon CFRP part

Specific costs

Material	Cost [€/kg]	Density [kg/m3]	Specific strength [kNm/kg]	Embodie d energy [MJ/kg]	Specific strength /Embodied energy [kNm/MJ]
Steel	0.4 - 0.6	7800	38	45	0.84
Aluminum	0.7 - 1.6	2600	130	227	0.57
Composite SMC	1.5 - 1.9	1200	150-400	33-226	1.77-4.55
Composite RTM	2.6 - 4.8	1200-1600	150-400	33-226	1.77-4.55

03.03.2021

Presenter

Tamas TURCSAN eCon Engineering www.econengineering.com e-mail: tamas.turcsan@econengineering.com

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 769826. The content of this publication is the sole responsibility of the Consortium partners listed herein and does not necessarily represent the view of the European Commission or its services.

Get in touch with the QUIET consortium!

www.quiet-project.eu

Project Coordination: Dragan SIMIC (AIT Austrian Institute of Technology GmbH | www.ait.ac.at) e-mail: dragan.simic@ait.ac.at

